1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
use core::{arch::asm, fmt};
use memory_addr::VirtAddr;

use super::GdtStruct;

/// Saved registers when a trap (interrupt or exception) occurs.
#[allow(missing_docs)]
#[repr(C)]
#[derive(Debug, Default, Clone, Copy)]
pub struct TrapFrame {
    pub rax: u64,
    pub rcx: u64,
    pub rdx: u64,
    pub rbx: u64,
    pub rbp: u64,
    pub rsi: u64,
    pub rdi: u64,
    pub r8: u64,
    pub r9: u64,
    pub r10: u64,
    pub r11: u64,
    pub r12: u64,
    pub r13: u64,
    pub r14: u64,
    pub r15: u64,

    // Pushed by `trap.S`
    pub vector: u64,
    pub error_code: u64,

    // Pushed by CPU
    pub rip: u64,
    pub cs: u64,
    pub rflags: u64,
    pub rsp: u64,
    pub ss: u64,
}

impl TrapFrame {
    /// Whether the trap is from userspace.
    pub const fn is_user(&self) -> bool {
        self.cs & 0b11 == 3
    }

    /// To set the stack pointer
    pub fn set_user_sp(&mut self, user_sp: usize) {
        self.rsp = user_sp as _;
    }

    /// 用于第一次进入应用程序时的初始化
    pub fn app_init_context(app_entry: usize, user_sp: usize) -> Self {
        // 当前版本的riscv不支持使用set_spp函数,需要手动修改
        // 修改当前的sstatus为User,即是第8位置0
        let mut trap_frame = TrapFrame::default();
        trap_frame.set_user_sp(user_sp);
        trap_frame.cs = GdtStruct::UCODE64_SELECTOR.0 as _;
        trap_frame.ss = GdtStruct::UDATA_SELECTOR.0 as _;
        trap_frame.rip = app_entry as _;
        trap_frame
    }

    /// set the return code
    pub fn set_ret_code(&mut self, ret_value: usize) {
        self.rax = ret_value as _;
    }

    /// 设置TLS
    pub fn set_tls(&mut self, _tls_value: usize) {
        // panic!("set tls: {:#x}", tls_value);
        // unsafe {
        //     write_thread_pointer(tls_value);
        // }
        todo!("set tls");
    }

    /// 获取 sp
    pub fn get_sp(&self) -> usize {
        self.rsp as _
    }

    /// 设置 pc
    pub fn set_pc(&mut self, pc: usize) {
        self.rip = pc as _;
    }

    /// 设置 arg0
    pub fn set_arg0(&mut self, arg: usize) {
        self.rdi = arg as _;
    }

    /// 设置 arg1
    pub fn set_arg1(&mut self, arg: usize) {
        self.rsi = arg as _;
    }

    /// 设置 arg2
    pub fn set_arg2(&mut self, arg: usize) {
        self.rdx = arg as _;
    }

    /// 获取 pc
    pub fn get_pc(&self) -> usize {
        self.rip as _
    }

    /// 获取 ret
    pub fn get_ret_code(&self) -> usize {
        self.rax as _
    }

    /// 设置返回地址
    pub fn set_ra(&mut self, _ra: usize) {
        todo!()
    }

    /// 获取所有 syscall 参数
    pub fn get_syscall_args(&self) -> [usize; 6] {
        [self.rdi, self.rsi, self.rdx, self.r10, self.r8, self.r9].map(|n| n as _)
    }

    /// 获取 syscall id
    pub fn get_syscall_num(&self) -> usize {
        self.rax as _
    }
}

#[repr(C)]
#[derive(Debug, Default)]
struct ContextSwitchFrame {
    r15: u64,
    r14: u64,
    r13: u64,
    r12: u64,
    rbx: u64,
    rbp: u64,
    rip: u64,
}

/// A 512-byte memory region for the FXSAVE/FXRSTOR instruction to save and
/// restore the x87 FPU, MMX, XMM, and MXCSR registers.
///
/// See <https://www.felixcloutier.com/x86/fxsave> for more details.
#[allow(missing_docs)]
#[repr(C, align(16))]
#[derive(Debug)]
pub struct FxsaveArea {
    pub fcw: u16,
    pub fsw: u16,
    pub ftw: u16,
    pub fop: u16,
    pub fip: u64,
    pub fdp: u64,
    pub mxcsr: u32,
    pub mxcsr_mask: u32,
    pub st: [u64; 16],
    pub xmm: [u64; 32],
    _padding: [u64; 12],
}

static_assertions::const_assert_eq!(core::mem::size_of::<FxsaveArea>(), 512);

/// Extended state of a task, such as FP/SIMD states.
pub struct ExtendedState {
    /// Memory region for the FXSAVE/FXRSTOR instruction.
    pub fxsave_area: FxsaveArea,
}

#[cfg(feature = "fp_simd")]
impl ExtendedState {
    #[inline]
    fn save(&mut self) {
        unsafe { core::arch::x86_64::_fxsave64(&mut self.fxsave_area as *mut _ as *mut u8) }
    }

    #[inline]
    fn restore(&self) {
        unsafe { core::arch::x86_64::_fxrstor64(&self.fxsave_area as *const _ as *const u8) }
    }

    const fn default() -> Self {
        let mut area: FxsaveArea = unsafe { core::mem::MaybeUninit::zeroed().assume_init() };
        area.fcw = 0x37f;
        area.ftw = 0xffff;
        area.mxcsr = 0x1f80;
        Self { fxsave_area: area }
    }
}

impl fmt::Debug for ExtendedState {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("ExtendedState")
            .field("fxsave_area", &self.fxsave_area)
            .finish()
    }
}

/// Saved hardware states of a task.
///
/// The context usually includes:
///
/// - Callee-saved registers
/// - Stack pointer register
/// - Thread pointer register (for thread-local storage, currently unsupported)
/// - FP/SIMD registers
///
/// On context switch, current task saves its context from CPU to memory,
/// and the next task restores its context from memory to CPU.
///
/// On x86_64, callee-saved registers are saved to the kernel stack by the
/// `PUSH` instruction. So that [`rsp`] is the `RSP` after callee-saved
/// registers are pushed, and [`kstack_top`] is the top of the kernel stack
/// (`RSP` before any push).
///
/// [`rsp`]: TaskContext::rsp
/// [`kstack_top`]: TaskContext::kstack_top
#[derive(Debug)]
pub struct TaskContext {
    /// The kernel stack top of the task.
    pub kstack_top: VirtAddr,
    /// `RSP` after all callee-saved registers are pushed.
    pub rsp: u64,
    /// Thread Local Storage (TLS).
    pub fs_base: usize,
    /// Extended states, i.e., FP/SIMD states.
    #[cfg(feature = "fp_simd")]
    pub ext_state: ExtendedState,
}

impl TaskContext {
    /// Creates a new default context for a new task.
    pub const fn new() -> Self {
        Self {
            kstack_top: VirtAddr::from(0),
            rsp: 0,
            fs_base: 0,
            #[cfg(feature = "fp_simd")]
            ext_state: ExtendedState::default(),
        }
    }

    /// Initializes the context for a new task, with the given entry point and
    /// kernel stack.
    pub fn init(&mut self, entry: usize, kstack_top: VirtAddr, tls_area: VirtAddr) {
        unsafe {
            // x86_64 calling convention: the stack must be 16-byte aligned before
            // calling a function. That means when entering a new task (`ret` in `context_switch`
            // is executed), (stack pointer + 8) should be 16-byte aligned.
            let frame_ptr = (kstack_top.as_mut_ptr() as *mut u64).sub(1);
            let frame_ptr = (frame_ptr as *mut ContextSwitchFrame).sub(1);
            core::ptr::write(
                frame_ptr,
                ContextSwitchFrame {
                    rip: entry as _,
                    ..Default::default()
                },
            );
            self.rsp = frame_ptr as u64;
        }
        self.kstack_top = kstack_top;
        self.fs_base = tls_area.as_usize();
    }

    /// Switches to another task.
    ///
    /// It first saves the current task's context from CPU to this place, and then
    /// restores the next task's context from `next_ctx` to CPU.
    pub fn switch_to(&mut self, next_ctx: &Self) {
        #[cfg(feature = "fp_simd")]
        {
            self.ext_state.save();
            next_ctx.ext_state.restore();
        }
        #[cfg(any(feature = "tls", feature = "monolithic"))]
        {
            self.fs_base = super::read_thread_pointer();
            unsafe { super::write_thread_pointer(next_ctx.fs_base) };
        }
        #[cfg(feature = "monolithic")]
        unsafe {
            // change gs data
            asm!("mov     gs:[offset __PERCPU_KERNEL_RSP_OFFSET], {kernel_sp}", 
                kernel_sp = in(reg) next_ctx.kstack_top.as_usize() + core::mem::size_of::<TrapFrame>());
        }
        crate::set_tss_stack_top(next_ctx.kstack_top + core::mem::size_of::<TrapFrame>());
        unsafe { context_switch(&mut self.rsp, &next_ctx.rsp) }
    }
}

#[naked]
unsafe extern "C" fn context_switch(_current_stack: &mut u64, _next_stack: &u64) {
    asm!(
        "
        push    rbp
        push    rbx
        push    r12
        push    r13
        push    r14
        push    r15
        mov     [rdi], rsp

        mov     rsp, [rsi]
        pop     r15
        pop     r14
        pop     r13
        pop     r12
        pop     rbx
        pop     rbp
        ret",
        options(noreturn),
    )
}